一些
#三伏三时
洛伦兹变换
洛仑兹提出洛仑兹变换是基于以太存在的前提的,然而以太被证实是不存在的,相对于任何惯性参照系,光速都具有相同的数值这个现象一时难以解释。爱因斯坦据此提出了狭义相对论。在狭义相对论中,空间和时间并不相互独立,而是一个统一的四维时空整体,不同惯性参照系之间的变换关系式在数学表达式上是一致的,爱因斯坦的相对论理论为洛仑兹变换结果提供了依据:
洛伦兹公式是洛伦兹为弥补经典理论中所暴露的缺陷而建立起来的。洛伦兹是一位理论物理学家,是经典电子论的创始人。
坐标系K1(O1,X1,Y1,Z1)以速度V相对于坐标系K(O,X,Y,Z)作匀速直线运动;三对坐标分别平行,V沿X轴正方向,并设X轴与X1轴重合,且当T1=T=0时原点O1与O重合。设P为被“观察”的某一事件,在K系中观察者“看”来。它是在T时刻发生在(X,Y,Z)处的,而在K1系中的观察者看来,它是在T1时刻发生在(X1,Y1,Z1)处的。这样的两个坐标系间的变换,我们叫洛伦兹坐标变换。
(后面的开始看不懂)
在推导洛伦兹变换之前,作为一条公设,我们必须假设时间和空间都是均匀的,因此它们之间的变换关系必须是齐次线性关系。如果方程式不是线性的,那么,对两个特定事件的空间间隔与时间间隔的测量结果就会与该间隔在坐标系中的位置与时间发生关系,从而破坏了时空的均匀性。例如,设X1与X的平方有关,即X1=AX^2,于是两个K1系中的距离和它们在K系中的坐标之间的关系将由X1a-X1b=A(Xa^2-Xb^2)表示。现在我们设K系中有一单位长度的棒,其端点落在Xa=2m和Xb=1m处,则X1a-X1b=3Am。这同一根棒,其端点在Xa=5m和Xb=4m处,则我们得到X1a-X1b=9Am。这样,对同一根棒的测量结果将随棒在空间的位置的不同而不同。为了不使我们的时空坐标系原点的选择与其他点相比较有某种物理上的特殊性,变换式必须是线性的